
1

Introduction to Threads

Steve Karmesin

10 September 1998

Overview

• What are the core ideas?
– Create, join, mutex, condition variables

• Race conditions
– The “dangling pointers” of threads.

• Benefits from using threads.
– Adaptivity, flexibility

• How will POOMA II use threads?
– Conceptually

• How might Tecolote use threads?
– High level loops, clusters of threads.



2

Thread Libraries

• Pthreads
– Procedural

– Standard

– Provided by vendor

– General

– Often slow.

• Tulip
– Object Oriented

– Java interface

– Provided by ACL

– General

– Fast

– Can sit on top of
pthreads.

Thread Creation

• pthread_create
– thread id pointer

– attributes

– function pointer

– data pointer

• Creates a new thread.

• Thread runs the function,
and the caller continues.

• Thread exits when the
function returns.

Pthread_create

Original thread

New thread
runs the
subroutine

Old
thread
continues

New thread
exits



3

Write To Disk

• Generate a thread to
asynchronously write data to
disk.

• Open the file

• Write the data

• Close the file

• No synchronization is needed.

• Allows the main thread to go on
while the disk I/O is happening.

• Also need to delete the data
structures.

struct data_t {

  char *file;  double *p;  int n;

};

void *dump(void *vp)

{

  data_t *p = vp;

  FILE *fp = fopen(p->file,”w”);

  fwrite(p->p,sizeof(double),p->n,fp);

  fclose(fp);

}

main()

{

…

   pthread_t id;

   pthread_create(&id,NULL,dump,datap);

…

}

Mutex

• Only one thread can lock a mutex
at one time.

• Anyone else trying to lock it will
wait.

• pthread_mutex_t mutex;

• pthread_mutex_lock(&mutex);

• pthread_mutex_unlock(&mutex);

• Waiting on a mutex often means
spinning

• Should usually only try to lock
mutexes when you expect to get it,
but want to be safe.

1 2 3

Locks mutex

Tries to lock

Tries to lock

Obtains lock

Runs

Runs

Obtains lock

Runs



4

Bad Barrier

// Barrier for n threads.

Barrier(int n)

{

static int count = 0;

   if (count==0)

      count = n-1;

   else

      count -= 1;

   while (count > 0) ;

}

• What is supposed to happen
– First thread sets count =n-1

– Next threads decrement count

– Everybody waits until all
decrements are done.

• Lots of ways this can go wrong
if multiple threads enter at
about the same time.

– Multiple threads see count==0
before one writes count=n-1

– count -= 1 is really read,
subtract, store, and multiple
threads could read before any
write.

• These are classic race
conditions.

Better Barrier Using Mutex

// Barrier for n threads.

Barrier(int n)

{

static int count = 0;

   static pthread_mutex_t

      mutex=PTHREAD_MUTEX_INIT;

   pthread_mutex_lock(&mutex);

   if (count==0)

      count = n-1;

   else

      count -= 1;

   pthread_mutex_unlock(&mutex);

   while (count > 0) ;

}

• Fixes the problems noted in the
previous.

– Only one thread can be in the
section that modifies count at
one time.

• There is still a problem
though…

– Two barriers in a row.

– Count goes to zero, some
threads go into the next barrier
and sets count again before all
the threads leave the while
loop.



5

Condition Variable

• “Wake me up when something
happens”

• Useful when you think
something will happen
someday and you want to wait
until then.

• One or more threads wait.

• One signals them.

• Exact syntax is fussy, have to
use a mutex to lock access.

The network

Send a message

Wait
on cv

Handler receives
message

Signals cv,
waking thread

CPU can go do other things while waiting

Join

• Wait for another thread to
finish.

• Useful when you generate a
bunch of workers, and want to
wait until they all fiinish.

• Join waits for one thread at a
time.

• To wait for N threads, join one
at a time.

Main thread generates workers

Main thread joins with workers, waits

Workers complete

Main thread continues



6

Race Conditions

• Any thread code should be
prepared for any or all threads
to stop at any assembly
language instruction and start
up again unpredictably.

• Getting this wrong is the
equivalent of dangling pointers.

– Unrepeatable, random, nasty
errors that are very difficult to
find.

– No purify.  No lint.

• Understanding
– Know a race condition

when you see it.

• Carefulness
– Be watchful when

coding.

• Discipline
– Good idioms.

– Don’t get lazy.

Why Use Threads Then?

• Performance
– Use shared memory instead of

packing buffers for MPI.

– Schedule threads for cache
reuse.

• Load Balancing
– If threads can migrate within

an SMP, you automatically get
load balancing within the
SMP.

– 48 is much nicer than 6000 for
load balancing.

• Overlap communication and
computation

– Put send and receive right next
to each other in the code, but
the thread scheduling reuses
the processors.

• Adaptivity
– Adaptivity is much simpler to

express because the threads
themselves are adaptive.

• None of these are impossible
w/o threads, just much easier
with them.



7

POOMA II Internal Threads

• POOMA sees the world as a
series of expressions to
evaluate.

– A=B+C*D

• POOMA I breaks the
expression down into pieces
(vnodes) and evaluates them on
every CPU.

• One “parse thread” per CPU
(per MPI process).

• POOMA II also sees the world
in terms of expressions to
evaluate.

• POOMA II also breaks the
expressions down into pieces
for evaluation.

• It then hands those pieces off to
threads for evaluation.

• One parse thread per a cluster
of CPU’s, perhaps one per
SMP.

• Many worker threads.

Lock-Step Implementation

• Suppose we did thread create
and join for each expression.

• A=B+C*D would loop over
vnodes, could generate a thread
per vnode, then wait until they
all finish (using join).

• Advantages over current:
– Load balancing on box

– Possible overlap of GC fill.

• Disadvantages over current:
– Thread creation and

destruction time.

A=B+C*D
Analyze
expression

Execute with
a bunch of
threads

Join the
threads when
the workers
finish

Each line finishes before 
the next one starts.



8

Overlapping Implementation

• Instead of joining at the end of
each statement, allow more
overlap.

• “Parse thread” runs through the
user code.

• Generates worker threads.

• Parse thread could get way
ahead of workers.

• If some workers need
communication, they wait, and
something else runs.

• Auto-load balance inside SMP.

A=B+C*D

Q=X+Y*Z

L=M+N*P

Data Dependencies

• Previous example had no data
dependencies.

• With data dependencies, some
threads can’t run until others
finish.

• Can handle this with condition
variables (POOMA II actually
does something fancier…)

• Threads sleep until their data is
available.

• Schedule threads to use data
that has just been released.

A=B+C*D

X=A+Y*Z

Y=A+C*B



9

How Tecolote Might Use Threads

• Whenever you have a loop,
think about using threads.

• If they’re independent and
they’re pretty big, generate a
thread for each and join at the
bottom of the loop.

for (n=0; n<nmats; ++n)

do_material(n);

could turn into:
for (n=0; n<nmats; ++n)

pthread_create(do_material,n);

for (n=0; n<nmats; ++n)

   pthread_join(n);

• Things to watch out for:
race conditions.
– If the different materials

accumulate into any
common arrays, protect
with mutexes.

– If you read something
someone else is writing,
you’ll need to serialize
somehow.


